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Two-Phase Equation of State for Al2O3

Kirill A. Velizhanin∗
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

(Dated: 08/26/2021)

Two-phase equation of state (EOS) for Al2O3 (alumina) is calibrated using the experimental/sim-
ulation calibration data uploaded to the caldata repository. The two phases are solid α-Al2O3

(corundum, sapphire, ruby) and its melt. The enthalpy of formation is set to that available from
the NIST-JANAF database at T = 0 K, P = 1 bar. The expected applicability range of the EOS is
from the ambient conditions to temperatures of ∼ 5000 K and pressures of ∼ 50-100 GPa.

I. GENERAL THEORY

The general description of the EOS models and the calibration procedure is given in detail elsewhere [1], so it is
described only very briefly here. The full equation of state (EOS) for the solid α-Al2O3(α phase) is described by the
Helmholtz free energy

Asolid(V, T ) = Acold(V ) +Avib(V, T ), (1)

where V is the specific (per unit mass) volume and T is the temperature. The “cold” energy, Acold(V ), is the energy
one would typically obtain from DFT calculations, i.e., it is not just the energy at zero temperature, but it also does
not include the zero point energy of lattice vibrations. In Ref. [1], the cold curve was stepwise analytic, i.e., the Birch-
Murnaghan form [2] was used in compression, and the so called “Lennard-Jones” form, Acold(V ) = A0+ A1

V a1
+ A2

V a2
, was

used in expansion. In this work, the Birch-Murnaghan form is used for the cold energy at all densities, for simplicity.
The parameters that need to be specified to fully describe the Birch-Murnaghan cold energy are:

1. V∗ - specific volume corresponding to the energy minimum of Acold(V ).

2. E∗ = Acold(V∗) - the value of energy at the minimum.

3. K∗ = −V dPcold

dV

∣∣
V=V∗

- the “cold” bulk modulus at V = V∗, where the “cold” pressure is Pcold = −dAcold(V )
V .

4. K ′∗ = dK
dPcold

∣∣∣
V=V∗

- the pressure derivative of the cold bulk modulus at V = V∗.

The Helmholtz free energy corresponding to the lattice vibrations, Avib(V, T ), is given by a single Debye model, similar
to how the diamond is described in Ref. [1]. The Debye temperature is a function of volume only, thus resulting in
the Mie-Grüneisen form of EOS [3]. The dependence of the Debye temperature θ on volume is given by

d ln θ

d lnV
= −Γ(V ), (2)

where Γ(V ) is the Grüneisen parameter. The dependence of Γ on V is encoded by two second-order polynomials in
V and 1/V in compression and expansion, respectively. See Eq. (3) in Ref. [1] and the pertaining discussion. What
needs to be specified to fully describe this step-wise polynomial form are:

1. Γ0 - the value of the Grüneisen parameter at the zero specific volume.

2. Γ∞ - the value of the Grüneisen parameter at the infinite specific volume.

3. Γ∗ = Γ(V∗) - the value of the Grüneisen parameter at some arbitrary volume where one polynomial is matched
with the other. The volume is chosen to be V∗ defined above.

4. γ∗ = d ln Γ
d lnV

∣∣
V=V∗

- the volume derivative of the Grüneisen parameter at V = V∗.

5. θ∗ - since Eq. (2) is a first order differential equation with respect to θ, one also needs to specify the Debye
temperature at the some volume. This volume is again chosen to be V∗, so θ∗ = θ(V∗) is a parameter to be
calibrated.
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A. Al2O3 melt

Helmholtz free energy for a melt of Al2O3 is not introduced independently, but is obtained by modifying that of a
solid, Eq. (1). We employ the HighTLiq model which gives the Helmholtz free energy of a melt Amelt(T, V ) near the
melting line by simply shifting the entropy of the solid as [4]

Amelt(T, V ) = Asolid(T, V )−∆S [T − Tm(V )] . (3)

Other contributions, not shown here, are needed to reproduce the correct asymptotic behavior of heat capacity at
T � Tm [4]. The dependence of the melting temperature Tm on the specific volume is coming from the Lindemann
melting criterion [5]

d lnTm
d lnV

= 2

[
1

3
− Γ(V )

]
. (4)

Once the solid EOS is specified, the extra EOS parameters needed for its melt are:

1. ∆S - the melting entropy in Eq. (3).

2. Tm,∗ - the melting temperature Tm(V ) at some arbitrary reference volume, which is again chosen to be V∗, and
so Tm,∗ = Tm(V∗).

Eqs. (1) and (3) are complete single-phase EOS, so any single-phase thermodynamic observable can be obtained
directly via thermodynamic differentiation. For example, for pressure one has P = P (T, V ) = −

(
∂A
∂V

)
T
. To compare

to single-phase experimental data one often needs to calculate specific volume as a function of pressure, which could
be obtained from P = P (T, V ) via numerical inversion, effectively yielding V = V (T, P ). Finally, such observables
as phase boundaries are obtained by evaluating the Gibbs free energy as a function of pressure and temperature,
Gα(T, P ) = Aα (T, V (T, P )) + PV (T, P ), and then numerically solving Gα(T, P ) = Gβ(T, P ), where subscripts
α, β = solid, ,melt denote single-phase EOS. All the above have been implemented within Python-based LANL
institutional thermochemical code Magpie [6]. In this work Magpie is used as a Python library that can generate
various thermodynamic properties of a multiphase material once models are specified.

II. CALIBRATION

The general calibration procedure is described in detail in Ref. [1]. The calibration data, previously uploaded to
the caldata repository, maintained by ASC-PEM-HE, is plotted by colored points in Figs. 1 - 4, with the error bars
present whenever available. The calibration data from experimental/atomistic simulations is referred to in the figure
legends by the first author’s last name, the first meaningful word in the title of the publication, and the publication
year. For example, Fig. 1 plots the following calibration data for the isobaric thermal expansion: SimmonsSingle1971
[7], GotoElastic1989 [8], AndersonThermoelastic1989 [9] and FiquetHigh1999 [10]. The results corresponding to the
calibrated EOS are plotted by black lines in the figures. The left panel in Fig. 2 plots the isothermal compression of the
solid Al2O3 at constant temperature of T = 300 K. The calibration data is FingerCrystal1978 [11], JephcoatXray1988
[12], RichetQuasi1988 [13], and DewaeleEquation2013 [14].

The right panel shows the shock Hugoniot for the solid Al2O3; the calibration data is MarshLASL1980 [15],
ErskineHigh1994 [16], CaoRefractive2014 [17], CaoRefractive2017 [18], and DewaeleEquation2013 [14]. The last set
of data is actually not a shock Hugoniot but an isotherm adopted from the left panel and plotted in the right panel
to illustrate that a shock Hugoniot of a weakly compressible material almost coincides with the isotherm at not too
high pressures.

Constant-pressure heat capacity CP is plotted in Fig. 3 as a function of temperature at constant pressure P = 1 bar.
The used calibration data is SaxenaAssesed1992 [19]. The solid-liquid melting line is depicted in Fig. 4. The used
calibration data is ShenMeasurement1995 [20], AhujaMelting1998 [21], and WangMelting2000 [22].

The calibration data is heterogeneous in a sense that for the same measurement, e.g., the pressure as a function of
volume in the shock Hugoniot, Fig. 2(right), some data do not have error bars, some have only pressure error bars,
and some have the both pressure and specific volume error bars. Because of this, it is impossible to unambiguously
assign calibration weights to the data sets coming from different experiment/simulations. The decision was made to
choose a single data set for each type of experiment/simulation that would represent a “typical” result. Only those
chosen data sets were used in the calibration procedure. Specifically, FiquetHigh1999 [10], DewaeleEquation2013 [14],
MarshLASL1980 [15], SaxenaAssesed1992 [19], and WangMelting2000 [22] datasets were picked out of those plotted
in Fig. 1, 2(left, right), 3 and 4, respectively. The last dataset was also limited by the pressure range between
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Figure 1. Isobaric thermal expansion at P = 1 bar.
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Figure 2. (left) Isothermal compression at T = 300 K, and (right) shock Hugoniot.

5 GPa and 60 GPa, when performing calibration. The idea behind that was that α-Al2O3is a complex compound
material and so it is unlikely that the HighTLiq model [4] can accurately describe the melting of this material in a
wide pressure/temperature range. Therefore, the data range was intentionally limited to that most relevant for the
ASC-PEM-HE program (the last “HE” stands for high explosives) to give the HighTLiq model a better chance to fit
the melting behavior.

The resulting parameters of the cold curve are given in Tab. I. The calibrated parameters of the lattice contribution

1/V∗ [g/cm3] E∗ [kJ/g] K∗ [GPa] K′∗

4.0211251494570845 −16.76425920294135 302.35745550830484 3.4796690807468007

Table I. Calibrated parameters of the cold energy.

to the Helmholtz free energy of α-Al2O3 are given in Tab. II. The calibrated parameters pertaining to the HighTLiq
model are given in Tab. III. Even though the calibration was performed by fitting the model EOS to only selected
calibration datasets (one per each experiment type), the model EOS is seen to agree reasonably with all the datasets
in Fig. 1, 2(left, right), 3 and 4. The worst agreement is encountered in the solid-liquid phase boundary, Fig. 4,
where the calibration data seems to be least reliable (e.g., large error bars). In particular, the model EOS does not
seem to accurately reproduce the curvature of the melting line at low pressures. For example, the model produces



4

400 600 800 1000 1200 1400 1600 1800

T [K]

0.0008

0.0009

0.0010

0.0011

0.0012

0.0013

C
P

[k
J
/g
/K

]

model

SaxenaAssesed1992

Figure 3. Constant-pressure heat capacity CP as a function of temperature at P = 1 bar.
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Figure 4. Solid-liquid melting line.

the melting temperature of 2616 K at P = 1 bar, which is noticeably higher than 2327 K observed experimentally [23].
However, the agreement is better at ASC-PEM-HE-relevant higher pressures.

The absolute energy shift of the Helmholtz free energy, encoded by the E∗ parameter of the cold energy model,
is irrelevant for all the types of calibration datasets in Figs. 1 - 4. However, the Magpie convention is to calibrate
an EOS so that the enthalpy of formation is correct. Magpie assumes that the enthalpy of the standard materials,
e.g., Al(fcc), O2(g), is zero at the Magpie standard state: T = 0 K, P = 1 bar. The enthalpy change, ∆fH, in the
following reaction

2Al(fcc) + 1.5O2(g)→ α-Al2O3 (5)

is then

∆fH
◦ = H◦ [α-Al2O3]− 2H◦ [Al(fcc)]− 1.5H◦ [O2(g)] = H◦ [α-Al2O3] , (6)

where the “◦” superscript denotes the Magpie standard state. The heat of formation for α-Al2O3 is ∆fH
◦ =
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Γ0 Γ∞ Γ∗ γ∗ θ∗ [K]

4/3 1/3 1.2692093277192558 6.076852098526661 982.1351035146715

Table II. The parameter of the Debye model. The values of Γ0 and Γ∞ were not obtained from the calibration procedure, their
choice is explained in Ref. [1].

∆S/R Tm,∗ [K]

7.284526984534509 3897.3797598656547

Table III. The calibrated parameters of the HighTLiq model. The entropy shift of the melt is taken per mole of Al2O3

“molecules”, and then divided by the gas constant R to yield a dimensionless value.

−1663.6 kJ/mol [23], or −16.316 kJ/g. Accordingly, E∗ in Tab. I was chosen so that the solid EOS, Eq. (1),
produces the enthalpy of −16.316 kJ/g at T = 0 K, P = 1 bar.

The entropy of melting, ∆S/R ≈ 7.28 in Tab. III is rather large, since the typical “normal melters” have the
entropy of melting ∆S/R ≈ 0.8 ± 0.1 [24]. However, the latter entropy is the entropy per mole of atoms, and the
former one is per mole of Al2O3 “molecules”. Dividing the obtained melting entropy of Al2O3 by 5 (number of atoms
in the molecule), we obtain ∆S/R/5 ≈ 1.46. This value is still larger than that of normal melters, but is already
a reasonable entropy for the so called “anomalous melters” where a change in electronic structure occurs along with
melting, e.g., the insulator-to-conductor transition [24]. Very tentatively, as the large scattering of data in Fig. 4 does
not allow otherwise, it could be suggested that upon melting Al2O3 becomes an atomic (ionic), rather then molecular,
conductive liquid with the electronic structure distinct from that of α-Al2O3. It can also be noted that the value of
entropy of melting obtained here is not too different from the experimental value of ∆S/R ≈ 5.63 [25].
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